Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phys Rev Lett ; 131(4): 046402, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566872

RESUMO

We study the effect of interelectron Coulomb interactions on the displacement field induced topological phase transition in transition metal dichalcogenide moiré heterobilayers. We find a nematic excitonic insulator phase that breaks the moiré superlattice's threefold rotational symmetry and preempts the topological phase transition in both AA and AB stacked heterobilayers when the interlayer tunneling is weak, or when the Coulomb interaction is not strongly screened. The nematicity originates from the frustration between the nontrivial spatial structure of the interlayer tunneling, which is crucial to the existence of the topological Chern band, and the interlayer coherence induced by the Coulomb interaction that favors uniformity in layer pseudospin orientations. We construct a unified effective two-band model that captures the physics near the band inversion and applies to both AA and AB stacked heterobilayers. Within the two-band model the competition between the nematic excitonic insulator phase and the Chern insulator phase can be understood as the switching of the energetic order between the s-wave and the p-wave excitons upon increasing the interlayer tunneling.

3.
Phys Rev Lett ; 131(2): 026501, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505969

RESUMO

We systematically study emergent Kondo lattice models from magic-angle twisted bilayer graphene using the topological heavy fermion representation. At the commensurate fillings, we demonstrate a series of symmetric strongly correlated metallic states driven by the hybridization between a triangular lattice of SU(8) local moments and delocalized fermions. In particular, a (fragile) topological Dirac Kondo semimetal can be realized, providing a potential explanation for the symmetry-preserving correlated state at ν=0. We further investigate the stability of the Dirac Kondo semimetal by constructing a quantum phase diagram showing the interplay between Kondo hybridization and magnetic correlation. The destruction of Kondo hybridization suggests that the magic-angle twisted bilayer graphene may be on the verge of a solid-state quantum simulator for novel magnetic orders on a triangular lattice. Experimental implications are also discussed.

4.
Phys Rev Lett ; 130(13): 130401, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067309

RESUMO

An ergodic system subjected to an external periodic drive will be generically heated to infinite temperature. However, if the applied frequency is larger than the typical energy scale of the local Hamiltonian, this heating stops during a prethermal period that extends exponentially with the frequency. During this prethermal period, the system may manifest an emergent symmetry that, if spontaneously broken, will produce subharmonic oscillation of the discrete time crystal (DTC). We study the role of dissipation on the survival time of the prethermal DTC. On one hand, a bath coupling increases the prethermal period by slowing down the accumulation of errors that eventually destroy prethermalization. On the other hand, the spontaneous symmetry breaking is destabilized by interaction with environment. The result of this competition is a nonmonotonic variation, i.e., the survival time of the prethermal DTC first increases and then decreases as the environment coupling gets stronger.

5.
Phys Rev Lett ; 129(5): 056804, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960586

RESUMO

We present a theory on the quantum phase diagram of AB-stacked MoTe_{2}/WSe_{2} using a self-consistent Hartree-Fock calculation performed in the plane-wave basis, motivated by the observation of topological states in this system. At filling factor ν=2 (two holes per moiré unit cell), Coulomb interaction can stabilize a Z_{2} topological insulator by opening a charge gap. At ν=1, the interaction induces three classes of competing states, spin density wave states, an in-plane ferromagnetic state, and a valley polarized state, which undergo first-order phase transitions tuned by an out-of-plane displacement field. The valley polarized state becomes a Chern insulator for certain displacement fields. Moreover, we predict a topological charge density wave forming a honeycomb lattice with ferromagnetism at ν=2/3. Future directions on this versatile system hosting a rich set of quantum phases are discussed.

6.
Phys Rev Lett ; 127(21): 217001, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860110

RESUMO

Motivated by the possible non-spin-singlet superconductivity in the magic-angle twisted trilayer graphene experiment, we investigate the triplet-pairing superconductivity arising from a correlation-induced spin-fermion model of Dirac fermions with spin, valley, and sublattice degrees of freedom. We find that the f-wave pairing is favored due to the valley-sublattice structure, and the superconducting state is time-reversal symmetric, fully gapped, and nontopological. With a small in-plane magnetic field, the superconducting state becomes partially polarized, and the transition temperature can be slightly enhanced. Our results apply qualitatively to Dirac fermions for the triplet-pairing superconductivity in graphene-based moiré systems, which is fundamentally distinct from triplet superconductivity in ^{3}He and ferromagnetic superconductors.

7.
Phys Rev Lett ; 127(18): 187001, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767382

RESUMO

Motivated by the observation of two distinct superconducting phases in the moiréless ABC-stacked rhombohedral trilayer graphene, we investigate the electron-acoustic-phonon coupling as a possible pairing mechanism. We predict the existence of superconductivity with the highest T_{c}∼3 K near the Van Hove singularity. Away from the Van Hove singularity, T_{c} remains finite in a wide range of doping. In our model, the s-wave spin-singlet and f-wave spin-triplet pairings yield the same T_{c}, while other pairing states have negligible T_{c}. Our theory provides a simple explanation for the two distinct superconducting phases in the experiment and suggests that superconductivity and other interaction-driven phases (e.g., ferromagnetism) can have different origins.

8.
Phys Rev Lett ; 127(9): 096802, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506187

RESUMO

Using a realistic band structure for twisted WSe_{2} materials, we develop a theory for the interaction-driven correlated insulators to conducting metals transitions through the tuning of the filling factor around commensurate fractional fillings of the moiré unit cell in the 2D honeycomb lattice, focusing on the dominant half-filled Mott insulating state, which exists for both long- and short-range interactions. We find metallic states slightly away from half-filling, as have recently been observed experimentally. We discuss the stabilities and the magnetic properties of the resulting insulating and metallic phases, and comment on their experimental signatures. We also discuss the nature of the correlated insulator states at the rational fractional fillings.

9.
Phys Rev Lett ; 124(4): 046403, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058749

RESUMO

We present a microscopic theory for collective excitations of quantum anomalous Hall ferromagnets (QAHF) in twisted bilayer graphene. We calculate the spin magnon and valley magnon spectra by solving Bethe-Salpeter equations and verify the stability of QAHF. We extract the spin stiffness from the gapless spin wave dispersion and estimate the energy cost of a skyrmion-antiskyrmion pair, which is found to be comparable in energy with the Hartree-Fock gap. The valley wave mode is gapped, implying that the valley polarized state is more favorable compared to the valley coherent state. Using a nonlinear sigma model, we estimate the valley ordering temperature, which is considerably reduced from the mean-field transition temperature due to thermal excitations of valley waves.

10.
Phys Rev Lett ; 122(17): 170403, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31107070

RESUMO

We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase that is characterized by a mobility edge. We measure the time evolution of an initial charge density wave after a quench and analyze the corresponding relaxation exponents. We find clear signatures of MBL when the corresponding noninteracting model is deep in the localized phase. We also critically compare and contrast our results with those from a tight-binding Aubry-André model, which does not exhibit a single-particle intermediate phase, in order to identify signatures of a potential many-body intermediate phase.

11.
Sci Rep ; 6: 32446, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27573668

RESUMO

Topological Weyl semimetals, besides manifesting chiral anomaly, can also accommodate a disorder-driven unconventional quantum phase transition into a metallic phase. A fundamentally and practically important question in this regard concerns an experimentally measurable quantity that can clearly distinguish these two phases. We show that the optical conductivity while serving this purpose can also play the role of a bonafide order parameter across such disorder-driven semimetal-metal quantum phase transition by virtue of displaying distinct scaling behavior in the semimetallic and metallic phases, as well as inside the quantum critical fan supporting a non-Fermi liquid. We demonstrate that the correction to the dielectric constant and optical conductivity in a dirty Weyl semimetal due to weak disorder is independent of the actual nature of point-like impurity scatterers. Therefore, optical conductivity can be used as an experimentally measurable quantity to study the critical properties and to pin the universality class of the disorder-driven quantum phase transition in Weyl semimetals.

12.
Phys Rev Lett ; 104(25): 255303, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867393

RESUMO

Motivated by experimental advances in the synthesis of gauge potentials for ultracold atoms, we consider the superfluid phase of interacting bosons on a square lattice in the presence of a magnetic field. We show that superfluid order implies spatial symmetry breaking, and predict clear signatures of many-body effects in time-of-flight measurements. By developing a Bogoliubov expansion based on the exact Hofstadter spectrum, we find the dispersion of the quasiparticle modes within the superfluid phase, and describe the consequences for Bragg spectroscopy measurements. The theory also provides an estimate of the critical interaction strength at the transition to the Mott insulator phase.

13.
Phys Rev Lett ; 94(16): 166802, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15904258

RESUMO

The Pfaffian state is an attractive candidate for the observed quantized Hall plateau at a Landau-level filling fraction nu=5/2. This is particularly intriguing because this state has unusual topological properties, including quasiparticle excitations with non-Abelian braiding statistics. In order to determine the nature of the nu=5/2 state, one must measure the quasiparticle braiding statistics. Here, we propose an experiment which can simultaneously determine the braiding statistics of quasiparticle excitations and, if they prove to be non-Abelian, produce a topologically protected qubit on which a logical Not operation is performed by quasiparticle braiding. Using the measured excitation gap at nu=5/2, we estimate the error rate to be 10(-30) or lower.

14.
Nat Mater ; 2(5): 292-4, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12728230
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...